skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahmed, Amal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Currently, there is a gap between the tools used by probability theorists and those used in formal reasoning about probabilistic programs. On the one hand, a probability theorist decomposes probabilistic state along the simple and natural product of probability spaces. On the other hand, recently developed probabilistic separation logics decompose state via relatively unfamiliar measure-theoretic constructions for computing unions of sigma-algebras and probability measures. We bridge the gap between these two perspectives by showing that these two methods of decomposition are equivalent up to a suitable equivalence of categories. Our main result is a probabilistic analog of the classic equivalence between the category of nominal sets and the Schanuel topos. Through this equivalence, we validate design decisions in prior work on probabilistic separation logic and create new connections to nominal-set-like models of probability. 
    more » « less
  2. In gradual typing, different languages perform different dynamic type checks for the same program even though the languages have the same static type system. This raises the question of whether, given a gradually typed language, the combination of the translation that injects checks in well-typed terms and the dynamic semantics that determines their behavior sufficiently enforce the static type system of the language. Neither type soundness, nor complete monitoring, nor any other meta-theoretic property of gradually typed languages to date provides a satisfying answer. In response, we present vigilance, a semantic analytical instrument that defines when the check-injecting translation and dynamic semantics of a gradually typed language are adequate for its static type system. Technically, vigilance asks if a given translation-and-semantics combination enforces the complete run-time typing history of a value, which consists of all of the types associated with the value. We show that the standard combination for so-called Natural gradual typing is vigilant for the standard simple type system, but the standard combination for Transient gradual typing is not. At the same time, the standard combination for Transient is vigilant for a tag type system but the standard combination for Natural is not. Hence, we clarify the comparative type-level reasoning power between the two most studied approaches to sound gradual typing. Furthermore, as an exercise that demonstrates how vigilance can guide design, we introduce and examine a new theoretical static gradual type system, dubbed truer, that is stronger than tag typing and more faithfully reflects the type-level reasoning power that the dynamic semantics of Transient gradual typing can guarantee. 
    more » « less
  3. We present Lilac, a separation logic for reasoning about probabilistic programs where separating conjunction captures probabilistic independence. Inspired by an analogy with mutable state where sampling corresponds to dynamic allocation, we show how probability spaces over a fixed, ambient sample space appear to be the natural analogue of heap fragments, and present a new combining operation on them such that probability spaces behave like heaps and measurability of random variables behaves like ownership. This combining operation forms the basis for our model of separation, and produces a logic with many pleasant properties. In particular, Lilac has a frame rule identical to the ordinary one, and naturally accommodates advanced features like continuous random variables and reasoning about quantitative properties of programs. Then we propose a new modality based on disintegration theory for reasoning about conditional probability. We show how the resulting modal logic validates examples from prior work, and give a formal verification of an intricate weighted sampling algorithm whose correctness depends crucially on conditional independence structure. 
    more » « less
  4. null (Ed.)
    Abstract Gradually typed languages are designed to support both dynamically typed and statically typed programming styles while preserving the benefits of each. Sound gradually typed languages dynamically check types at runtime at the boundary between statically typed and dynamically typed modules. However, there is much disagreement in the gradual typing literature over how to enforce complex types such as tuples, lists, functions and objects. In this paper, we propose a new perspective on the design of runtime gradual type enforcement: runtime type casts exist precisely to ensure the correctness of certain type-based refactorings and optimizations. For instance, for simple types, a language designer might desire that beta-eta equality is valid. We show that this perspective is useful by demonstrating that a cast semantics can be derived from beta-eta equality. We do this by providing an axiomatic account program equivalence in a gradual cast calculus in a logic we call gradual type theory (GTT). Based on Levy’s call-by-push-value, GTT allows us to axiomatize both call-by-value and call-by-name gradual languages. We then show that we can derive the behavior of casts for simple types from the corresponding eta equality principle and the assumption that the language satisfies a property called graduality , also known as the dynamic gradual guarantee. Since we can derive the semantics from the assumption of eta equality, we also receive a useful contrapositive: any observably different cast semantics that satisfies graduality must violate the eta equality. We show the consistency and applicability of our axiomatic theory by proving that a contract-based implementation using the lazy cast semantics gives a logical relations model of our type theory, where equivalence in GTT implies contextual equivalence of the programs. Since GTT also axiomatizes the dynamic gradual guarantee, our model also establishes this central theorem of gradual typing. The model is parameterized by the implementation of the dynamic types, and so gives a family of implementations that validate type-based optimization and the gradual guarantee. 
    more » « less
  5. Compiler correctness is an old problem, with results stretching back beyond the last half-century. Founding the field, John McCarthy and James Painter set out to build a completely trustworthy compiler. And yet, until quite recently, even despite truly impressive verification efforts, the theorems being proved were only about the compilation of whole programs, a theoretically quite appealing but practically unrealistic simplification. For a compiler correctness theorem to assure complete trust, the theorem must reflect the reality of how the compiler will be used. There has been much recent work on more realistic compositional compiler correctness aimed at proving correct compilation of components while supporting linking with components compiled from different languages using different compilers. However, the variety of theorems, stated in remarkably different ways, raises questions about what researchers even mean by a compiler is correct. In this pearl, we develop a new framework with which to understand compiler correctness theorems in the presence of linking, and apply it to understanding and comparing this diversity of results. In doing so, not only are we better able to assess their relative strengths and weaknesses, but gain insight into what we as a community should expect from compiler correctness theorems of the future. 
    more » « less
  6. Parametric polymorphism and gradual typing have proven to be a difficult combination, with no language yet produced that satisfies the fundamental theorems of each: parametricity and graduality. Notably, Toro, Labrada, and Tanter (POPL 2019) conjecture that for any gradual extension of System F that uses dynamic type generation, graduality and parametricity are ``simply incompatible''. However, we argue that it is not graduality and parametricity that are incompatible per se, but instead that combining the syntax of System F with dynamic type generation as in previous work necessitates type-directed computation, which we show has been a common source of graduality and parametricity violations in previous work. We then show that by modifying the syntax of universal and existential types to make the type name generation explicit, we remove the need for type-directed computation, and get a language that satisfies both graduality and parametricity theorems. The language has a simple runtime semantics, which can be explained by translation to a statically typed language where the dynamic type is interpreted as a dynamically extensible sum type. Far from being in conflict, we show that the parametricity theorem follows as a direct corollary of a relational interpretation of the graduality property. 
    more » « less